Package: crt2power (via r-universe)

September 4, 2024

```
Title Designing Cluster-Randomized Trials with Two Co-Primary Outcomes
Version 1.1.0
Description Provides methods for powering cluster-randomized trials
     with two co-primary outcomes using five key design techniques.
     Includes functions for calculating required sample size and
     statistical power. For more details on methodology, see Li et
     al. (2020) <doi:10.1111/biom.13212>, Pocock et al. (1987)
     <doi:10.2307/2531989>, Vickerstaff et al. (2019)
     <doi:10.1186/s12874-019-0754-4>, and Yang et al. (2022)
     <doi:10.1111/biom.13692>.
License GPL-3
Encoding UTF-8
LazyData true
URL https://github.com/melodyaowen/crt2power
Depends R (>= 4.3)
Imports devtools (>= 2.4.5), knitr (>= 1.43), rootSolve (>= 1.8.2.3),
     tidyverse (>= 2.0.0), tableone (>= 0.13.2), foreach (>= 1.5.2),
     mvtnorm (>= 1.2), tibble (>= 3.2.1), dplyr (>= 1.1.4), tidyr
     (>= 1.3.0), stats (>= 3.6.2)
RoxygenNote 7.3.1
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Repository https://melodyaowen.r-universe.dev
RemoteUrl https://github.com/melodyaowen/crt2power
RemoteRef HEAD
RemoteSha 15f9d94c537a5e015fa730a6befe692d268e7db5
```

Type Package

Contents

Index		26
	run_crt2_design	
	calc_pwr_single_1dftest	
	calc_pwr_pval_adj	
	calc_pwr_disj_2dftest	
	calc_pwr_conj_test	
	calc_pwr_comb_outcome	
	calc_ncp_chi2	
	calc_m_single_1dftest	
	calc_m_pval_adj	
	calc_m_disj_2dftest	
	calc_m_conj_test	
	calc_m_comb_outcome	
	calc_K_pval_adj	
	calc_K_disj_2dftest	
	calc_K_conj_test	

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses a combined outcomes approach where the two outcome effects are summed together.

outcomes approach.

Usage

```
calc_K_comb_outcome(
  power,
  m,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
```

calc_K_conj_test 3

```
r = 1
```

Arguments

power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_comb_outcome(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_K_conj_test

Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using the conjunctive intersection-union test approach.

Description

Allows user to calculate the required number of clusters per treatment group of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the statistical power, and cluster size. Uses the conjunctive intersection-union test approach.Code is adapted from "calSampleSize_ttestIU()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

4 calc_K_conj_test

Usage

```
calc_K_conj_test(
  power,
  m,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
  deltas = c(0, 0),
 dist = "T"
)
```

Arguments

power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.
cv	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.
deltas	Vector of non-inferiority margins, set to delta_1 = delta_2 = 0; numeric vector.
dist	Specification of which distribution to base calculation on, either 'T' for T-Distribution or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.

calc_K_disj_2dftest 5

Value

A data frame of numerical values.

Examples

```
calc_K_conj_test(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

 $calc_K_disj_2dftest$

Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using a disjunctive 2-DF test approach.

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the statistical power, and cluster size. Uses the disjunctive 2-DF test approach. Code is adapted from "calSampleSize_omnibus()" from https://github.com/siyunyang/coprimary_CRT.

Usage

```
calc_K_disj_2dftest(
    dist = "Chi2",
    power,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.

6 calc_K_pval_adj

beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

calc_K_pval_adj

Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using three common p-value adjustment methods

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the statistical power, and cluster size. Uses three common p-value adjustment methods.

Usage

```
calc_K_pval_adj(
  power,
  m,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
```

calc_K_single_1dftest

```
varY2,
rho01,
rho02,
rho2,
r = 1
```

Arguments

power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

7

Value

A data frame of numerical values.

Examples

```
calc_K_pval_adj(power = 0.8, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)
```

calc_K_single_1dftest Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using the single 1-DF combined test approach.

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the statistical power, and cluster size. Uses the single 1-DF combined test approach for clustered data and two outcomes.

Usage

```
calc_K_single_1dftest(
   power,
   m,
   alpha = 0.05,
   beta1,
   beta2,
   varY1,
   varY2,
   rho01,
   rho02,
   rho1,
   rho2,
   r = 1
)
```

Arguments

power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_single_1dftest(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_comb_outcome Calculate cluster size for a cluster-randomized trial with co-primary endpoints using a combined outcomes approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses a combined outcomes approach where the two outcome effects are summed together.

Usage

```
calc_m_comb_outcome(
   power,
   K,
   alpha = 0.05,
   beta1,
   beta2,
   varY1,
   varY2,
   rho01,
   rho02,
   rho1,
   rho2,
   r = 1
)
```

Arguments

power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.

10 calc_m_conj_test

rho2 Correlation between the first and second outcomes for the same individual; numeric.

r Treatment allocation ratio - K2 = rK1 where K1 is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_m_comb_outcome(power = 0.8, K = 15, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_conj_test

Calculate cluster size for a cluster-randomized trial with co-primary endpoints using the conjunctive intersection-union test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the conjunctive intersection-union test approach.

Usage

```
calc_m_conj_test(
  power,
  Κ,
  alpha = 0.05,
  beta1,
 beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
  deltas = c(0, 0),
  dist = "T"
)
```

calc_m_conj_test 11

Arguments

power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.
CV	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.
deltas	Vector of non-inferiority margins, set to delta_1 = delta_2 = 0; numeric vector.
dist	Specification of which distribution to base calculation on, either 'T' for T-Distribution or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.

Value

A numerical value.

Examples

```
calc_m_conj_test(power = 0.8, K = 15, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

12 calc_m_disj_2dftest

calc_m_disj_2dftest Calculate cluster size for a cluster-randomized trial with co-primary endpoints using a disjunctive 2-DF test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the disjunctive 2-DF test approach.

Usage

```
calc_m_disj_2dftest(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.

calc_m_pval_adj 13

rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_m_disj_2dftest(power = 0.8, K = 15, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_pval_adj

Calculate cluster size for a cluster-randomized trial with co-primary endpoints using three common p-value adjustment methods

Description

#' @description Allows user to calculate the cluster size of a cluster-randomized trial with two coprimary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses three common p-value adjustment methods.

Usage

```
calc_m_pval_adj(
  power,
  K,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho2,
  r = 1
)
```

Arguments

power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_m_pval_adj(power = 0.8, K = 15, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)
```

calc_m_single_1dftest Calculate cluster size for a cluster-randomized trial with co-primary endpoints using the single 1-DF combined test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the single 1-DF combined test approach for clustered data and two outcomes.

calc_m_single_1dftest 15

Usage

```
calc_m_single_1dftest(
  power,
  K,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1
)
```

Arguments

power	Desired statistical power in decimal form; numeric.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_m_single_1dftest(power = 0.8, K = 15, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_ncp_chi2 Find the non-centrality parameter corresponding to Type I error rat and statistical power	ate
--	-----

Description

Allows user to find the corresponding non-centrality parameter for power analysis based on the Type I error rate, statistical power, and degrees of freedom.

Usage

```
calc_ncp_chi2(alpha, power, df = 1)
```

Arguments

alpha Type I error rate; numeric.

power Desired statistical power in decimal form; numeric.

df Degrees of freedom; numeric.

Value

A number.

Examples

```
calc_ncp_chi2(alpha = 0.05, power = 0.8, df = 1)
```

calc_pwr_comb_outcome Calculate statistical power for a cluster-randomized trial with coprimary endpoints using a combined outcomes approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses a combined outcomes approach where the two outcome effects are summed together.

Usage

```
calc_pwr_comb_outcome(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

18 calc_pwr_conj_test

Examples

```
calc_pwr_comb_outcome(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_pwr_conj_test

Calculate statistical power for a cluster-randomized trial with coprimary endpoints using the conjunctive intersection-union test approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the conjunctive intersection-union test approach. Code is adapted from "calPower_ttestIU()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

Usage

```
calc_pwr_conj_test(
 Κ,
 m,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
 deltas = c(0, 0),
  dist = T
)
```

Arguments

K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.

beta1 Effect size for the first outcome; numeric.
beta2 Effect size for the second outcome; numeric.

calc_pwr_disj_2dftest 19

varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.
CV	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.
deltas	Vector of non-inferiority margins, set to delta_1 = delta_2 = 0; numeric vector.
dist	Specification of which distribution to base calculation on, either 'T' for T-Distribution or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.

Value

A numerical value.

Examples

```
calc_pwr_conj_test(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_pwr_disj_2dftest Calculate statistical power for a cluster-randomized trial with coprimary endpoints using a disjunctive 2-DF test approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the disjunctive 2-DF test approach. Code is adapted from "calPower_omnibus()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

Usage

```
calc_pwr_disj_2dftest(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

calc_pwr_pval_adj 21

Examples

```
calc_pwr_disj_2dftest(K = 15, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_pwr_pval_adj

Calculate statistical power for a cluster-randomized trial with coprimary endpoints using three common p-value adjustment methods

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses three common p-value adjustment methods.

Usage

```
calc_pwr_pval_adj(
  dist = "Chi2",
  K,
  m,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho2,
  r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.

rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_pwr_pval_adj(K = 15, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)
```

```
calc_pwr_single_1dftest
```

Calculate statistical power for a cluster-randomized trial with coprimary endpoints using the single 1-DF combined test approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the single 1-DF combined test approach for clustered data and two outcomes.

Usage

```
calc_pwr_single_1dftest(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

run_crt2_design 23

Argument	S
----------	---

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
K	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_pwr_single_1dftest(K = 15, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

run_crt2_design Find study design output specifications based on all five CRT coprimary design methods.

Description

Allows user to calculate either statistical power, number of clusters per treatment group (K), or cluster size (m), given a set of input values for all five study design approaches.

24 run_crt2_design

Usage

```
run_crt2_design(
 output,
 power = NA,
 K = NA
 m = NA,
 alpha = 0.05,
 beta1,
 beta2,
 varY1,
 varY2,
 rho01,
 rho02,
 rho1,
 rho2,
 r = 1
)
```

Arguments

output	Parameter to calculate, either "power", "K", or "m"; character.
power	Desired statistical power; numeric.
K	Number of clusters in each arm; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where $K1$ is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

run_crt2_design 25

Examples

```
run_crt2_design(output = "power", K = 15, m = 300, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

Index

```
calc_K_comb_outcome, 2
calc_K_conj_test, 3
calc_K_disj_2dftest, 5
calc_K_pval_adj, 6
calc_K_single_1dftest, 7
calc_m_comb_outcome, 9
calc_m_conj_test, 10
{\tt calc\_m\_disj\_2dftest}, {\color{red} 12}
calc_m_pval_adj, 13
calc_m_single_1dftest, 14
calc_ncp_chi2, 16
{\tt calc\_pwr\_comb\_outcome}, 16
calc_pwr_conj_test, 18
calc_pwr_disj_2dftest, 19
calc_pwr_pval_adj, 21
calc_pwr_single_1dftest, 22
run_crt2_design, 23
```