Package: crt2power 1.1.0

Melody Owen

crt2power: Designing Cluster-Randomized Trials with Two Co-Primary Outcomes

Provides methods for powering cluster-randomized trials with two co-primary outcomes using five key design techniques. Includes functions for calculating required sample size and statistical power. For more details on methodology, see Li et al. (2020) <doi:10.1111/biom.13212>, Pocock et al. (1987) <doi:10.2307/2531989>, Vickerstaff et al. (2019) <doi:10.1186/s12874-019-0754-4>, and Yang et al. (2022) <doi:10.1111/biom.13692>.

Authors:Melody Owen [aut, cre]

crt2power_1.1.0.tar.gz
crt2power_1.1.0.zip(r-4.5)crt2power_1.1.0.zip(r-4.4)crt2power_1.1.0.zip(r-4.3)
crt2power_1.1.0.tgz(r-4.4-any)crt2power_1.1.0.tgz(r-4.3-any)
crt2power_1.1.0.tar.gz(r-4.5-noble)crt2power_1.1.0.tar.gz(r-4.4-noble)
crt2power_1.1.0.tgz(r-4.4-emscripten)crt2power_1.1.0.tgz(r-4.3-emscripten)
crt2power.pdf |crt2power.html
crt2power/json (API)

# Install 'crt2power' in R:
install.packages('crt2power', repos = c('https://melodyaowen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/melodyaowen/crt2power/issues

On CRAN:

3.78 score 2 scripts 180 downloads 17 exports 167 dependencies

Last updated 2 months agofrom:7526e4be82. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winOKNov 07 2024
R-4.5-linuxOKNov 07 2024
R-4.4-winOKNov 07 2024
R-4.4-macOKNov 07 2024
R-4.3-winOKNov 07 2024
R-4.3-macOKNov 07 2024

Exports:calc_K_comb_outcomecalc_K_conj_testcalc_K_disj_2dftestcalc_K_pval_adjcalc_K_single_1dftestcalc_m_comb_outcomecalc_m_conj_testcalc_m_disj_2dftestcalc_m_pval_adjcalc_m_single_1dftestcalc_ncp_chi2calc_pwr_comb_outcomecalc_pwr_conj_testcalc_pwr_disj_2dftestcalc_pwr_pval_adjcalc_pwr_single_1dftestrun_crt2_design

Dependencies:askpassbackportsbase64encbitbit64blobbrewbriobroombslibcachemcallrcellrangerclassclicliprcodetoolscolorspacecommonmarkconflictedcpp11crayoncredentialscurldata.tableDBIdbplyrdescdevtoolsdiffobjdigestdownlitdplyrdtplyre1071ellipsisevaluatefansifarverfastmapfontawesomeforcatsforeachfsgarglegdatagenericsgertggplot2ghgitcredsgluegmodelsgoogledrivegooglesheets4gtablegtoolshavenhighrhmshtmltoolshtmlwidgetshttpuvhttrhttr2idsiniisobanditeratorsjquerylibjsonliteknitrlabelinglabelledlaterlatticelifecyclelubridatemagrittrMASSMatrixmemoisemgcvmimeminiUIminqamitoolsmodelrmunsellmvtnormnlmenumDerivopensslpillarpkgbuildpkgconfigpkgdownpkgloadpraiseprettyunitsprocessxprofvisprogresspromisesproxypspurrrR6raggrappdirsrcmdcheckRColorBrewerRcppRcppArmadilloreadrreadxlrematchrematch2remotesreprexrlangrmarkdownrootSolveroxygen2rprojrootrstudioapirversionsrvestsassscalesselectrsessioninfoshinysourcetoolsstringistringrsurveysurvivalsyssystemfontstableonetestthattextshapingtibbletidyrtidyselecttidyversetimechangetinytextzdburlcheckerusethisutf8uuidvctrsviridisLitevroomwaldowhiskerwithrxfunxml2xopenxtableyamlzipzoo

Readme and manuals

Help Manual

Help pageTopics
Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using a combined outcomes approach.calc_K_comb_outcome
Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using the conjunctive intersection-union test approach.calc_K_conj_test
Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using a disjunctive 2-DF test approach.calc_K_disj_2dftest
Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using three common p-value adjustment methodscalc_K_pval_adj
Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using the single 1-DF combined test approach.calc_K_single_1dftest
Calculate cluster size for a cluster-randomized trial with co-primary endpoints using a combined outcomes approach.calc_m_comb_outcome
Calculate cluster size for a cluster-randomized trial with co-primary endpoints using the conjunctive intersection-union test approach.calc_m_conj_test
Calculate cluster size for a cluster-randomized trial with co-primary endpoints using a disjunctive 2-DF test approach.calc_m_disj_2dftest
Calculate cluster size for a cluster-randomized trial with co-primary endpoints using three common p-value adjustment methodscalc_m_pval_adj
Calculate cluster size for a cluster-randomized trial with co-primary endpoints using the single 1-DF combined test approach.calc_m_single_1dftest
Find the non-centrality parameter corresponding to Type I error rate and statistical powercalc_ncp_chi2
Calculate statistical power for a cluster-randomized trial with co-primary endpoints using a combined outcomes approach.calc_pwr_comb_outcome
Calculate statistical power for a cluster-randomized trial with co-primary endpoints using the conjunctive intersection-union test approach.calc_pwr_conj_test
Calculate statistical power for a cluster-randomized trial with co-primary endpoints using a disjunctive 2-DF test approach.calc_pwr_disj_2dftest
Calculate statistical power for a cluster-randomized trial with co-primary endpoints using three common p-value adjustment methodscalc_pwr_pval_adj
Calculate statistical power for a cluster-randomized trial with co-primary endpoints using the single 1-DF combined test approach.calc_pwr_single_1dftest
Find study design output specifications based on all five CRT co-primary design methods.run_crt2_design